Tools for Understanding and Responding to Near Repeat Crimes

Travis Taniguchi, PhD (taniguchi@rti.org)
Elizabeth Groff, PhD

This project was supported by Award No. 2012-IJ-CX-0039, awarded to the Police Foundation by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Justice.
Agenda

• An experiment to prevent residential burglary
 • Calculating NR risk
 • Identifying high risk areas
 • Developing an intervention
 • Evaluating impact
• Understanding NR crime prevention potential
• An integrated NR analysis framework

This presentation will be on my website at ttaniguchi.net
The Tools of NR Analysis

- Near Repeat Calculator (2006)
 - Dr. Jerry Ratcliffe, Temple University

- Near Repeat Area Identifier (2015)
 - Dr. Elizabeth Groff, Temple University
 - Dr. Travis Taniguchi, RTI International
 - Built by Azavea

- Near Repeat Crime Prevention Calculator (2017)
 - Dr. Groff
 - Dr. Taniguchi
 - Built by Center for Data Science, RTI International
What is the near repeat pattern of burglary and why should I care?
• When one house on a street is burgled neighbors are at a greater risk of being victimized
• Distance (< 2 blocks) and time (< 2 months) is short
 • Must take quick action
• More likely where housing type and layout are similar
• The emotional & financial toll of residential burglary
 • Sense of violation
 • Average loss exceeds $2,000
The Experiment - Background

• Why focus on near repeat crimes?
 • Allows targeting scarce police resources
 • Can use as a performance indicator
 • Follow-on benefit of sending police to already high crime places
 • Basis for partnerships with other agencies, citizens, and nonprofit groups
Where was the experiment conducted?
The Experiment - Sites

Baltimore County, MD
Population - 817,455
Burglaries - 1,110
Officers - 1,800

Redlands, CA
Population - 69,916
Burglaries - 353
Officers - 80

Baltimore County, MD
Redlands, CA

Policing Research Program
How is near repeat risk assessed?
The Experiment - Calculating Risk

- Near repeat calculator
 - Over what space-time windows does a statistically significant near repeat pattern exist?
The Experiment - NR Risk

- Baltimore County
 - Significant space-time risk
 - Near repeat pattern exists

<table>
<thead>
<tr>
<th></th>
<th>0-7 Days</th>
<th>8-14 Days</th>
<th>15-21 Days</th>
<th>22-28 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same location</td>
<td>5.18</td>
<td>1.58</td>
<td>0.00</td>
<td>8.14</td>
</tr>
<tr>
<td>1 to 400 ft.</td>
<td>4.46</td>
<td>1.55</td>
<td>1.24</td>
<td>1.09</td>
</tr>
<tr>
<td>401 to 800 ft.</td>
<td>1.64</td>
<td>2.12</td>
<td>1.17</td>
<td>1.30</td>
</tr>
<tr>
<td>801 to 1200 ft.</td>
<td>2.17</td>
<td>1.57</td>
<td>1.07</td>
<td>1.31</td>
</tr>
<tr>
<td>1201 to 1600 ft.</td>
<td>1.27</td>
<td>1.40</td>
<td>1.31</td>
<td>0.77</td>
</tr>
</tbody>
</table>
The Experiment- NR Risk

- Redlands
 - Significant space-time risk
 - Near repeat pattern exists

<table>
<thead>
<tr>
<th></th>
<th>0-3 Days</th>
<th>4-6 Days</th>
<th>7-9 Days</th>
<th>10-12 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same location</td>
<td>5.43</td>
<td>1.58</td>
<td>5.76</td>
<td>0.56</td>
</tr>
<tr>
<td>1 to 400 ft.</td>
<td>2.81</td>
<td>1.85</td>
<td>0.66</td>
<td>0.61</td>
</tr>
<tr>
<td>401 to 800 ft.</td>
<td>2.19</td>
<td>0.70</td>
<td>1.71</td>
<td>1.26</td>
</tr>
<tr>
<td>801 to 1200 ft.</td>
<td>1.46</td>
<td>0.85</td>
<td>1.06</td>
<td>0.82</td>
</tr>
<tr>
<td>1201 to 1600 ft.</td>
<td>1.06</td>
<td>0.54</td>
<td>0.68</td>
<td>1.35</td>
</tr>
</tbody>
</table>
How was the experiment implemented?
The Experiment- Design

- Trickle randomization
 - Randomize as events occur
- Goal of 139 treatment/controls
- Experiment ran from Sept. 2014 to Dec. 2015
- Site differences
 - RPD all automated
 - BCPD run manually
The Experiment- Design

On a daily basis, how do we...

1. Analyze the spatial & temporal patterns of events
2. Identify potential treatment areas
3. Assign areas to treatment or control
4. Deploy treatment providers
5. Track outcomes

We build a tool!
The Experiment- NRAIT

• Doesn’t require R knowledge
 • Program licensed under GNU license
• Contained in two files
 • Config.R.template
 • Experiment.R
The Experiment - Theory

- **High risk zone**
 - Measure outward from burglary along street network to high risk distance threshold

- **Displacement buffer**
 - Measure outward from burglary along street network to high risk buffer distance threshold
The Experiment - Theory

- Burglary
- Randomization
- Treatment
- Control
- Deploy Treatment
The Experiment - In Process

- Burglary
 - In existing area?
 - Yes
 - Count as outcome
 - No
 - Within study area?
 - No
 - Excluded
 - Yes
 - Allowable day?
 - No
 - Excluded
 - Yes
 - Generate high risk areas
 - No
 - Creates overlap (existing)?
 - Yes
 - Mark Unavailable
 - No
 - Creates overlap (new)?
 - Yes
 - Randomly select
 - Exclude others
 - No
 - Exceeds max treatment?
 - Yes
 - Randomly select max
 - Exclude others
 - No
 - Random assignment
 - Control
 - Select addresses
 - Store addresses
 - Select addresses
 - Report treatment area
 - Deploy treatment

- Treatment
 - Select addresses
 - Report treatment area
 - Deploy treatment
The Experiment- NRAIT

- **System requirements**
 - Windows, Mac, or Linux OS
 - Several GB of storage
 - Access to CRAN package repository and tile.stamen.com

- **Necessary programs**
 - R
 - Text editor
 - GIS (optional)

- **Shapefile requirements**
 - Addresses (points)
 - Streets with connectivity for network analysis (lines)
 - Study area (polygons)
 - Crime (points)
The Experiment - NRAIT

- Tool parameters
 - Working directory
 - Risk and buffer distance
 - Include all touching segments - True/false
 - Overall # Treatment
 - Censored count
 - Max treatments per day

- Network settings
 - Location - File path
 - Unique identifier
The Experiment - NRAIT

- Event settings
 - Location - File path
 - Unique ID
 - Date variable
 - Date format

- Study area
 - Location - File path

- Address settings
 - Location - File path
 - Unique ID
 - Address label (displayed to user)
 - Proximity override (pre-assign addresses to streets)

Column format for occurrence column [date format string]
Format strings are passed to the R as.Date function
Examples:
"%Y-%m-%d"
"%Y/%m/%d"
config.data.events.occurredformat = "%Y/%m/%d"
The Experiment- NRAIT

- Cumulative event file
- Cumulative street file
- Daily log of event processing
- Treatment provider form
The Experiment - NRAIT

- **Street(s) with initiator event info**
- **Addresses in treatment zone**
- **Street(s) in treatment zone**
- **Initiator event(s)**
The Experiment- NRAIT

Experiment Zone ID: 150040795, RCT Slot: 122

Zone ID (found in dataset) Position in the randomization process
The Experiment - NRAIT

- Map of treatment area
- Blue cross on burglarized house
The Experiment- NRAIT

<table>
<thead>
<tr>
<th>StreetSegmentID</th>
<th>Address</th>
<th>Hangtag</th>
<th>Conversation</th>
<th>Referral</th>
</tr>
</thead>
<tbody>
<tr>
<td>3287</td>
<td>1601 ARCATCA DR</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>3315</td>
<td>102 KLAMATH ST</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>3315</td>
<td>1602 ARCATCA DR</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>3315</td>
<td>1605 ARCATCA DR</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>3315</td>
<td>1609 ARCATCA DR</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>3319</td>
<td>104 S DEARBORN ST</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
<tr>
<td>3319</td>
<td>123 S DEARBORN ST</td>
<td>____</td>
<td>____</td>
<td>____</td>
</tr>
</tbody>
</table>

- Treatment address list
- Form for documenting activity at each location
The Experiment- Treatment

What was done in NR high risk areas?
The Experiment- Treatment

Can providing the public with timely information about burglary risk reduce residential burglary?

- Community policing & CPTED
 - Security/safety audits
 - Suggest target hardening (locking windows, deadbolts)
 - Behavioral changes to reduce risk

- Residents becomes partners in security
- Low cost for agencies
- Positive results in several UK studies
The Experiment - Treatment

• Raise awareness of risk
• Deliver information via uniform personnel
• Tools
 • Scripts for field personnel
 • Crime prevention hangtag
 • Security audit
• Ask for criminal intelligence
The Experiment - Treatment Providers
The Experiment- Treatment Providers

• Inform
 • There has been a burglary in the neighborhood
 • They are there as part of a crime prevention program

• Reassure
 • There is an increased risk, but the risk is still low
 • There is no need for alarm

• Advise
 • Crime prevention advice
 • How to secure home
 • Review crime prevention hangtag
 • How to report suspicious activity
How do we evaluate a NR-based initiative?
The Experiment- Evaluation

- Crime
 - Change in burglary
 - Change in other property crimes

- Community
 - Changes in behavior
 - Public perceptions about the program
 - Public support for the program

- Treatment providers
 - Explore impact of treatment on agency volunteers
The Experiment - Burglary Results

Baltimore County

<table>
<thead>
<tr>
<th></th>
<th>1–4 Weeks</th>
<th>1–8 Weeks</th>
<th>1–12 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>120 .06</td>
<td>.07</td>
<td>.07</td>
</tr>
<tr>
<td>Treatment</td>
<td>122 .06</td>
<td>.06</td>
<td>.08</td>
</tr>
</tbody>
</table>

Redlands

<table>
<thead>
<tr>
<th></th>
<th>1–4 Weeks</th>
<th>1–8 Weeks</th>
<th>1–12 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>65 .06</td>
<td>.11</td>
<td>.14</td>
</tr>
<tr>
<td>Treatment</td>
<td>68 .06</td>
<td>.10</td>
<td>.10</td>
</tr>
</tbody>
</table>
The Experiment - Other Crime

Theft, theft from vehicle, and vandalism

Baltimore County

<table>
<thead>
<tr>
<th></th>
<th>1–4 Weeks</th>
<th>1–8 Weeks</th>
<th>1–12 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Control</td>
<td>120</td>
<td>.26</td>
<td>.44</td>
</tr>
<tr>
<td>Treatment</td>
<td>122</td>
<td>.33</td>
<td>.51</td>
</tr>
</tbody>
</table>

Redlands

<table>
<thead>
<tr>
<th></th>
<th>1–4 Weeks</th>
<th>1–8 Weeks</th>
<th>1–12 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Control</td>
<td>65</td>
<td>.09</td>
<td>.15</td>
</tr>
<tr>
<td>Treatment</td>
<td>68</td>
<td>.12</td>
<td>.21</td>
</tr>
</tbody>
</table>
The Experiment- Community

Results based on crime were not great.

How did the community feel about it?
The Experiment - Community

- Was the notification memorable?
 - 56% did not remember receiving a notification
- Most common actions taken in response to notification?
 - Locking doors/windows
 - Watching out for neighbors
 - More likely to report a burglary
- Did treatment increase fear of crime?
 - 86% no change in their perception of burglary
 - 42% more likely to report burglary
- What was perception of the treatment?
 - 82% thought agency was being proactive
 - 100% thought agency should continue program
“Really appreciated the increased BCPD presence during the recent spate of burglaries!”

“I felt reasonably secure when I saw the Officer in uniform and a BCPD car on the street. Nice job. I'm sure you don't hear that enough.”
The Experiment- Treatment Providers

Results of the community survey were positive.

How did the treatment providers feel about it?
The Experiment - Treatment providers

- Treatment providers perceptions of effectiveness
 - 97% successful at engaging the community
 - 89% positive impact on police-community relations
 - 95% community responded positively to the program

- Effect of satisfaction with volunteering?
 - 68% program improved their volunteer experience
 - 58% more likely to volunteer in the future
“There seemed to be a great appreciation of our efforts to not only educate the community on current trends, but also simply to engage residents in a community policing style, rather than only interacting during enforcement actions.”
The Experiment - Summary

- Crime
 - No significant change in residential burglary
 - No significant change in other property crimes

- Residents
 - Positive perceptions of the program
 - Did not create fear in residents

- Volunteers
 - Positive impact on agency volunteers
How can we better understand the spatial and temporal patterns of NR events?

Can we better specify the potential impact of disrupting NR patterns?
NRCPC- Why?

- For practitioners
 - Should we undertake this intervention?
 - Was the intervention successful?
 - Is it worth continuing?

- For researchers
 - Crime prevention potential measured at micro level

- For both research and practice
 - Offers a specific and realistic metric for evaluating program success
Consider the scenario

Two cities have 1,000 burglaries a year and implement an intervention to reduce that number...

Agency A

- Prior to implementation, the number of burglaries that were near repeats is calculated as 100
- Burglaries in program areas go down by 50, a 50% reduction
- Program expanded because of success
Consider the scenario

Two cities have 1,000 burglaries a year and implement an intervention to reduce that number…

- Burglaries go down by 50
- Chief sees burglary down 5%
- New program shelved because low ROI
So what is a near repeat anyway?
NRCPC- Methodology

- Not all burglaries are reported to the police
 - May result in incomplete patterns
- Reporting of burglary is often delayed
 - Poor temporal resolution
 - Potential errors in temporal ordering
- Burglaries that occur on the same day as the originator event are not counted as repeats
 - Not preventable because they occur before pattern is identified
NRCPC- Methodology

• Near repeat criteria
 • Spatial- Within distance threshold
 • How do you calculate distances?
 • Temporal- Within temporal threshold
 • Disregard events that occur on the same day as the event being evaluated
 • Occurs after event being evaluated
 • Each event counted only once

• Event dispositions
 • Originator
 • Repeat
 • Not counted
9 burglaries from January 1st through June 30th

High risk threshold
- 800 feet
- 30 days
Filter on distance threshold

- Only connections within spatial threshold are shown
NRCPC- Example

- Consider timing and identify potential pairs

Example C

(6) April 18
(7) April 19
(8) May 20
(5) March 20

Example A

(4) Feb. 1
(2) Jan. 18
(3) Jan. 18
(9) June 17

Example B

(1- Jan. 3

Examples A, B, and C illustrate the concept of timing and potential pairs in a diagram.
NRCPC - Example

Example A

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event Allocated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>❌</td>
<td>✓</td>
</tr>
</tbody>
</table>

Example B

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event Allocated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>✓</td>
<td>❌</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
No near repeat events in these examples
Example C

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event already allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>
Two near repeat events in these examples
How can we automate this process?

We build a tool!
The NRCPC- Methodology

Near Repeat Prevention Tool

- **Input Shapefile**: BurglaryExport/Burglaries.shp
- **Unique ID Field**: INC_NUM
- **Timestamp Field**: DtREPOR
- **Timestamp Format**: yyyy-MM-dd hh:mm:ss
- **Output Directory**: niguchi/Desktop/NRPT Output

Spatial Distance Metric
- **Euclidean**
- **Number of Spatial Bands**: 5
- **Spatial Band Width (meters)**: 122.00
- **Number of Temporal Bands**: 5
- **Temporal Band Width (days)**: 7.00

[Optional]:
- Allow events to be repeats for multiple different events
- Allow events to be both originators and repeats
- Allow events on the same day to count as a repeat pair

[2017-09-05 10:55:46]<INFO>: Reading field names from shapefile C:/Users/taniguchi/Desktop/BurglaryExport/Burglaries.shp
The NRCPC - Methodology

Near Repeat Prevention Tool

Input Shapefile
BurglaryExport/Burglaries.shp
Unique ID Field
INC_NUM
Timestamp Field
DtREPOR
Timestamp Format
yyyy-MM-dd hh:mm:ss
Output Directory
nguchi/Desktop/NRPT Output
Road Network File (optional)

Spatial Distance Metric
Euclidean
Manhattan
Network
5
Allow events to be repeats for multiple different events
Allow events to be both originators and repeats
Allow events on the same day to count as a repeat pair

[2017-09-05 10:59:30] <INFO>: Writing bins to file C:/Users/tniguchi/Desktop/NRPT Output\counts.csv
The NRCPC- Methodology

- Manhattan Distance
- Euclidean Distance
- Network Distance
The NRCPC- Methodology

Near Repeat Prevention Tool

Input Shapefile:
- BurglaryExport/Burglaries.shp

Unique ID Field:
- INC_NUM

Timestamp Field:
- DtREPOR

Timestamp Format:
- yyyy-MM-dd hh:mm:ss

Output Directory:
- niguchi/Desktop/NRPT Output

Road Network File (optional):

Spatial Distance Metric:
- Euclidean
 - Number of Spatial Bands: 5
 - Spatial Band Width (meters): 122.00
 - Number of Temporal Bands: 5
 - Temporal Band Width (days): 7.00

Options:
- Allow events to be repeats for multiple different events
- Allow events to be both originators and repeats
- Allow events on the same day to count as a repeat pair

[2017-09-05 10:55:46]<INFO>: Reading field names from shapefile C:/Users/taniguchi/Desktop/BurglaryExport/Burglaries.shp
The NRCPC - Methodology

- Leave this field blank AND select "Network Distance"
 - Program will download and use OpenStreetMap data
- Link to a street file AND select “Network Distance”
 - Program will use your Shapefile
- Leave this field blank AND select other distance metric
 - No street file needed
The NRCPC- Methodology

Near Repeat Prevention Tool

- Input Shapefile: BurglaryExport/Burglaries.shp
- Unique ID Field: INC_NUM
- Timestamp Field: DIREPOR
- Timestamp Format: yyyy-MM-dd hh:mm:ss
- Output Directory: niguchi/Desktop/NRPT Output
- Road Network File (optional)

Spatial Distance Metric
- Euclidean
- Number of Spatial Bands: 5
- Spatial Band Width (meters): 122.00
- Number of Temporal Bands: 5
- Temporal Band Width (days): 7.00

- Allow events to be repeats for multiple different events
- Allow events to be both originators and repeats
- Allow events on the same day to count as a repeat pair

Logs:
- Writing bins to file C:/Users/taniguchi/Desktop/NRPT Output\counts.csv
- Successfully wrote bins to file.
- Writing repeat reports to base path C:/Users/taniguchi/Desktop/NRPT Output\repeat and originator reports to base path C:/Users/taniguchi/Desktop/NRPT Output\originator
- Successfully wrote all reports.
- Run finished successfully.
The NRCPC- Methodology

Option 1- Allows events to be counted in multiple NR chains

Option 2- Allows events to be originators and repeat events

Option 3- Allows same-day events to be counted in NR chains

Robust evaluations would generally require leaving Options 1 & 2 unchecked
The NRCPC- Methodology

1. Review output for excluded cases
2. Ensure N matches crime file

Note 1: Downloading OSM file can be time consuming
Note 2: Binning events is time consuming
Note 3: Calculating network distance can be computationally consuming. Be prepared to wait for 30+ min for complex graphs
NRCPC- Demonstration

• Examining open source data from seven cities (data.policefoundation.org/)
 • Denver
 • Durham
 • Fayetteville
 • Orlando
 • Philadelphia
 • Santa Rosa
 • Seattle
 • St. Louis
NRCPC - Demonstration

<table>
<thead>
<tr>
<th></th>
<th>Baltimore Co.</th>
<th>Redlands</th>
<th>Denver</th>
<th>Durham</th>
<th>Fayetteville</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Blocks 4 Weeks</td>
<td>5.89</td>
<td>7.76</td>
<td>14.97</td>
<td>14.30</td>
<td>14.51</td>
</tr>
<tr>
<td></td>
<td>Orlando</td>
<td>Philadelphia</td>
<td>Santa Rosa</td>
<td>Seattle</td>
<td>St. Louis</td>
</tr>
<tr>
<td></td>
<td>Baltimore Co.</td>
<td>Redlands</td>
<td>Denver</td>
<td>Durham</td>
<td>Fayetteville</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>4 Blocks 4 Weeks</td>
<td>8.18</td>
<td>15.24</td>
<td>23.90</td>
<td>21.98</td>
<td>20.53</td>
</tr>
<tr>
<td></td>
<td>Orlando</td>
<td>Philadelphia</td>
<td>Santa Rosa</td>
<td>Seattle</td>
<td>St. Louis</td>
</tr>
<tr>
<td>4 Blocks 4 Weeks</td>
<td>30.77</td>
<td>35.84</td>
<td>16.47</td>
<td>26.31</td>
<td>32.97</td>
</tr>
</tbody>
</table>
The NRCPC- Strategy Development

- Add the Excel file into your ArcMap session
- Join the information from NRCPC to your shp file
 - Identify the originators (Originator_ID)
 - Identify the repeats (Repeat_ID)
- Visually display the pattern of each
- Use the hot spot tool to discover where there are concentrations of near repeat events.

These are the areas to focus NR prevention efforts
The NRCPC- Strategy Development
The NR Analysis Framework

- Identify recurring crime and disorder issue
- Near Repeat Calculator to identify global patterns
- Near Repeat Crime Prevention Potential tool to explore local variability
- Develop an intervention
- Respond to NR pattern using NRAIT
- Run as an RCT if desired
- Use output from NRAIT to assess effect
- Conduct additional statistical analyses
Tools for Understanding and Responding to Near Repeat Crimes

Travis Taniguchi, PhD (taniguchi@rti.org)
Elizabeth Groff, PhD